POLTAVA STATE MEDICAL UNIVERSITY Department of Anesthesiology and Intensive Care

Intensive care of acute respiratory failure

Boduliev Oleksii assistant professor

Lecture plan

- 1. Hypoxia classification, clinic, differential diagnosis of different types of hypoxia.
- 2. Hypercapnia.
- 3. Hypocapnia.
- 4. Classification of respiratory failure.
- 5. Basic principles of respiratory failure intensive care.
- 6. Oxygen therapy: methods, indications, toxic effect of oxygen.

Lecture plan

- Respyratory support: indications, methods, efficiency criteria.
- 8. Methods of restoration of airway patency and improvement of lung drainage function.
- 9. Adults respiratory distress syndrome: etiology, pathogenesis, clinical signs, intensive care.
- 10. Status asthmaticus: etiology, pathogenesis, clinical signs, intensive care.

Definition

Acute impairment in gas exchange between the lungs and the blood causing hypoxia with or without hypercapnia. The inability of the lungs to meet the body's metabolic-needs for the transport of oxygen (O₂) into the blood and/or removal of carbon dioxide (CO₂) from the blood.

Hypoxic hypoxia

a) Deficiency of oxygen in inspired air (high altitude, suffocation)
b) Hypoactive hypoventilation (central nervous system, neuromuscular or skeletal disorders)
c) Upper airway obstruction (foreign

body, trauma or angioedema)

Pulmonary hypoxia

a) Increased airway resistance (chronic obstructive pulmonary disease and asthma)
b) Abnormal alveolar ventilation-perfusion ratio (pulmonary embolism, pneumonia, aspiration)

Pulmonary hypoxia

c) Diminished diffusing capacity via the alveolar-capillary membrane (interstitial lung disease and pulmonary vascular disease) d) Pulmonary shunting (atelectasis, pneumonia, hepatopulmonary syndrome, and arteriovenous malformations)

Cardiac right-to-left shunts; (atrial septal defect)

Anemic hypoxia a) Anemia b) Hemoglobinopathies (methemoglobinemia and carbon monoxide poisoning) 5. Inadequate oxygen transport due to a circulatory defect (static hypoxia)

Cardiac right-to-left shunt (atrial septal defect)

Anemic hypoxia a) Anemia b) Hemoglobinopathies (methemoglobinemia and carbon monoxide poisoning)

Static hypoxia

a) General circulatory deficiency or collapse (shock or cardiac failure)
b) Localized circulatory deficiency (peripheral, cerebral, or coronary vessels)

Histotoxic hypoxia

a) Late-stage irreversible shock b) Poisoning of cellular oxidation enzymes (cyanide or arsenic toxicity and heavy ethanol intoxication) c) Diminished cellular metabolic capacity for using oxygen (beri-beri, hyperthyroidism)

Classification ARF

Hypoxemic Respiratory Failure	Hypercapnic Respiratory Failure
Known as: Type I ARF, Lung Failure, Oxygenation Failure, Respiratory Insufficiency	<i>Known as:</i> Type II ARF, Pump Failure, Ventilatory Failure
Definition: The failure of lungs and heart to provide adequate O ₂ to meet metabolic needs	Definition: The failure of the lungs to eliminate adequate CO ₂
Criteria: $PaO_2 < 60 \text{ mmHg on } FiO_2 \ge .50$ or $PaO_2 < 40 \text{ mmHg on any } FiO_2$ $SaO_2 < 90$	Criteria: Acute ↑ in PaCO ₂ > 50 mmHg or Acutely above normal baseline in COPD with concurrent ↓ in pH < 7.30
Basic Causes: R-L shunt V/Q mismatch Alveolar hypoventilation Diffusion defect Inadequate FIO ₂	Basic Causes: Pump failure (drive, muscles, WOB) ↑ CO ₂ production R-L shunt ↑ Deadspace

qtachypnea qdyspnea qthe use of accessory respiratory muscles

Diagnostic work-up basic

qpulsoxymetry
qchest X-Ray
qbedside ultrasound (BLUE)
qcomplete blood count
qarterial blood gases
qelectrolites

Diagnostic work-up advanced

qcomputerized tomography (CT)
qspirometry
qcapnography
qbronchoscopy
qmicrobiological evaluation
qcardiac enzymes

Treatment

Oxygen Therapy a treatment that provides you with extra oxygen to reduce / correct arterial hypoxemia

Oxygen Therapy Indication: **q**peri and post cardiac or respiratory arrest **q**hypoxia - diminished blood oxygen levels (oxygen saturation levels of <92%) **q**acute and chronic hypoxemia (PaO₂ < 65mmHg) gshock **c**low cardiac output and metabolic acidosis (HCO₃ < 18mmol/l) **c**hronic type two respiratory failure

Oxygen Therapy Nasal Cannula

Concentration O_2 : 22 - 40% Delivery O_2 :1 - 6 L/min

Advantages: **q**patient can talk and eat while receiving oxygen **q**easy to use **q**low cost

Limitations: **q**easily dislodged **q**not as effective is a patient is a mouth breather or has blocked nostrils or a deviated septum or polyps **q**drying to nares if level is above 4 L/min.

Oxygen Therapy Simple face mask

Concentration O_2 : 25 - 60% Delivery O_2 :4 - 10 L/min

Advantages: **q**moderate oxygen concentrations **q**easy to use **q**low cost

Oxygen Therapy Non rebreather mask

Concentration O_2 : 40 - 80% Delivery O_2 : 6 - 15 L/min

Advantages: **q**high oxygen concentrations **q**easy to use

Limitations: **q**the risk of suffocation **q**the chance of hyper-oxygenation **q**possiblity lack of humidity

Oxygen Therapy Venturi mask

Concentration O_2 : 24 - 60% Delivery O_2 : 4 - 15 L/min

qset oxygen concentrations **q**does not dry mucous membranes

Limitations: **q**difficult to using

Oxygen Therapy High-flow nasal cannula

Concentration O_2 : 21 - 100% Delivery O_2 :5 - 60 L/min

Advantages: **q**maintenance of constant FiO₂ **q**generation of a positive endexpiratory pressure **q**decrease in anatomical dead space **q**improved mucociliary clearance **q**decreased work of breathing

Oxygen Therapy Hyperbaric oxygen therapy

Indications:

qAir or gas embolism; **q**Carbon monoxide poisoning; **q**Decompression sickness; **q**Clostridal myositis.

qsuppression of breathing qoxygen toxicity qretinopathy of prematurity

Oxygen Therapy Side effects

edry of bloody nose

qskin irritation

Grisk of fire

Mechanical Ventilation Indications

- **q** Cardiorespiratory arrest or impending arrest
- Respiratory distress/tachypnea with increased ventilatory demand and breathing effort leading to respiratory muscle fatigue
- Severe hypercaphic respiratory failure with either poor candidacy for nasal intermittent positive pressure ventilation (NIPPV) or failure of NIPPV
- Severe refractory hypoxemia with failure of noninvasive oxygen delivery devices
- **q** Severe refractory metabolic acid-base disorder
- Need for therapeutic hyperventilation or hypoventilation
- Decreased respiratory drive with bradypnea

Peak Inspiratory Pressure (PIP): dynamic pressure needed to fully inflate the lung Airway Resistance: PIP – Plateau Pressure (normally <5cmH20 unless excessive airway resistance) Inspiratory Pause: ventilator maneuver to measure plateau pressure Plateau Pressure (PPlat): alveolar distending pressure

Invasive

Non-invasive

Modes of Mechanical Ventilation	Types of Breaths	Independent Variable	Dependent Variable	Notes
Volume Assist/Control	Assisted or Controlled	Preset Tidal Volume	PIP & Plateau Pressures	Control tidal volume (lung protective) Control of minute ventilation (RR & Vt)
Pressure Assist/Control	Assisted or Controlled	Preset Pressure	Adequate Tidal Volumes (not too high or low)	Patient comfort (decelerating flow), Control over delivered pressures (avoid barotrauma)
Pressure Support (PS)	Supported	Preset Pressure	Adequate Tidal Volumes (not too high or low)	Patient comfort Allows patient to maintain respiratory work effort
Synchronized Intermittent Mandatory Ventilation (SIMV) • PS	Assisted, Controlled or Supported	PC-SIMV=Preset Pressure VC-SIMV=Preset Tidal Volume	PC- SIMV=Adequate Tidal Volumes (not too high or low) VC-SIMV=PIP & Plateau Pressures	Can get benefits of supported breaths (PS), but still ensure minimum number of mandatory breaths (controlled or assisted)
Pressure Regulated Volume Control (PRVC)	Assisted or Controlled	Preset Tidal Volume	PIP & Plateau Pressures	Control Minute Ventilation Control Vt, Patient comfort (decelerating flow), Can limit high pressures (avoid barotrauma)

Mechanical Ventilation Choosing a Ventilatory Mode

Advantages for volume-targeted modes qease of monitoring pulmonary mechanics qsimple to limit tidal volume

Advantages for pressure-targeted modes **q**protection against dynamic hyperinflation **q** enhanced patient comfort

Mechanical Ventilation intelectual modes

Neurally Adjusted Ventilatory Assist (NAVA)

INTELLIVENT

Complications of Mechanical Ventilation

Mechanical Ventilation Complications

Volutrauma	Overdistention
Atelectetrauma	 Repeated recruitment and collapse
Bio trauma	 Inflammatory mediators
Barotrauma	 High-pressure induced lung damage
Oxygen toxic effect	• FiO2

Extracorporeal membrane oxygenation

the using of mechanical devices to temporarily (days to months) support heart or lung function

Extracorporeal membrane oxygenation

Extracorporeal membrane oxygenation Indications: Acute severe cardiac or pulmonary insufficiency with a high risk of death, resistant to optimal traditional therapy
Extracorporeal membrane oxygenation **Contraindications: c**Conditions incompatible with normal life if the person recovers **Preexisting conditions that affect** the quality of life (CNS status, endstage malignancy, risk of systemic bleeding with anticoagulation) **G**Age and size

Extracorporeal membrane oxygenation. Access

Extracorporeal membrane oxygenation. Access

Veno-arterial Veno-venous Arterio-venous Oxygenator Pump

ARDS definition

Acute Respiratory Distress Syndrome The Berlin Definition

	ACUTE RESPIRATORY DISTRESS SYNDROME					
Timing	Within 1 week of a known clinical insult of new/worsening respiratory symptoms					
Chest Imaging ^a	Bilateral opacities – not fully explained by effusions, lobar/lung collapse, or nodules					
Origin of Edema	Respiratory failure not fully explained by cardiac failure or fluid overload; Need objective assessment (e.g., echocardiography) to exclude hydrostatic edema if no risk factor present					
	Mild	Moderate	Severe			
Oxygenation ^b	$200 < PaO_2/FiO_2 \le 300$ with PEEP or CPAP $\ge 5 \text{ cmH}_2\text{O}^{\circ}$	$100 < PaO_2/FiO_2 \le 200$ with PEEP \ge 5 cmH_2O	$PaO_2/FiO_2 \le 100$ with PEEP $\ge 5 \text{ cmH}_2O$			

^a Chest x-ray or CT scan

^b If altitude higher than 1000 m, correction should be made: PaO₂/FiO₂ × (barometric pressure/760)

^c This may be delivered non-invasively in the Mild ARDS group

ARDS pathogenesis

ARDS CT

ARDS risk factors

Direct lung injury

- § pneumonia
- § gastric content aspiration
- § inhalation injury
- drowning
- Severe blow to the chest or other accident that bruises the lungs

ARDS risk factors

- **Indirect lung injury**
- Sepsis
- § non-chest trauma
- § pancreatitis
- § burns
- § non-cardiogenic shock
- § drug overdose
- Sacute lung injury following tranfusions (TRALI)

ARDS infection

Most common pathogens responsible for ARDS genesis.

Bacteria	Virus	Fungi	Parasites	
Streptococcus pneumoniae	Influenza A and B			
Haemophilus influenzae	Rhinoviruses			
Enterobacteriaceae	RSV	Pneumocystis		
Staphylococcus aureus	Parainfluenza	Jirovecii		
	viruses			
Legionella pneumophila	Coronavirus		Toxoplasma	
Clamydia pneumoniae	Enterovirus		gondii	
Mycoplasma pneumoniae	HSV			
Pseudomonas aeruginosa	CMV	Aspergillus		
Acinetobacter baumannii	-	fumigatus		
Stenotrophompnas maltophilia	_			

ARDS severity

Murray Score

Variable	Score						
	0	1	2	3	4		
PaO ₂ /FiO ₂ (on 100% oxygen) in mm Hg	≥300	225-299	175-224	100-174	<100		
CXR (quadrant)	Normal	1	2	3	4		
PEEP (cm H ₂ O)	≤5	6-8	9-11	12-14	≥15		
Compliance (mL/cm H ₂ O)	≥80	60-79	40-59	20-39	≤19		

Abbreviations: CXR = chest X-ray; FiO_2 = fraction of inspired oxygen; PaO_2 = partial pressure of oxygen; PEEP = positive endexpiratory pressure

0 no lung injury; 1 - 2.5 mild to moderate lung injury >2.5 severe lung injury

ARDS treatment

A "timetable" for the acute management of hypoxemia in ARDS patients. The sequence of important measures in the hypoxemic (early

ARDS Corticosteroids

Corticosteroids compared to placebo for Acute Respiratory Distress Syndrome

Patient or population: Adults with ARDS

Settings: Intensive Care

Intervention: Corticosteroids

Comparison: Placebo

	Illustrative comp (95% CI)	arative risks	Relative	No of	Quality of		
Outcomes	Control risk Intervention risk		effect (95% Cl)	participants (studies)	evidence (GRADE)	Comments	
	Placebo	Corticosteroids					
Mortality (Hospital)	526 per 1000	326 per 1000 (121 to 663)	RR 0.62 (0.23 to 1.26)	561 (5 studies)	+ VERY LOW Due to serious risk of bias, serious inconsistency and serious imprecision	All studies conducted in the pre-lung protection strategy era. One study changed ventilation protocol during the study, following ARDS Net ARMA result	
Mortality (Hospital or 60 day)	500 per 1000	455 per 1000 (355 to 590)	RR 0.91 (0.71 to 1.18)	725 (8 studies)	++ LOW Due to serious inconsistency and serious imprecision	Pooled estimate from studies of both treatment and preventative steroids	
Adverse Events	350 per 1000	287 per 1000 (175 to 477)	RR 0.82 (0.5 to 1.36)	494 (4 studies)	++ LOW Due to serious risk of bias and serious imprecision	Composite of infection; neuromyopathy; diabetes, Gastro-intestinal bleeding and others	

A large, multi-centre study on steroids in established ARDS is currently planned.

ARDS Fluid management

qsuggesed the use of a conservative fluid strategy in patients with ARDS. (GRADE recommendation: weakly in favour)

ARDS mechanical ventilation

ARDS mechanical ventilation

Tidal volume 6 ml/kg predicted body weight or less with a plateau pressure less than or equal to 30 cmH₂O

	LTV	1	HTV	1		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.1.1 60 - day							
Brochard 1998	27	58	22	58	9.5%	1.23 [0.80, 1.89]	
Subtotal (95% CI)		58		58	9.5%	1.23 [0.80, 1.89]	-
Total events	27		22				
Heterogeneity: Not app	plicable						
Test for overall effect:	Z = 0.93 (F	P = 0.3	5)				
2.1.2 Hospital							-
ARDS Network 2000	133	432	170	429	73.3%	0.78 [0.65, 0.93]	
Brower 1999	13	26	12	26	5.2%	1.08 [0.62, 1.91]	
Stewart 1998	30	60	28	60	12.0%	1.07 [0.74, 1.55]	
Subtotal (95% CI)		518		515	90.5%	0.83 [0.71, 0.98]	•
Total events	176		210				
Heterogeneity: Chi2 = 3	3.15, df = 2	2(P = 0)).21); I ² =	37%			
Test for overall effect:	Z = 2.26 (f	P = 0.02	2)				
Total (95% CI)		576		573	100.0%	0.87 [0.75, 1.01]	•
Total events	203		232				
Heterogeneity: Chi2 =	5.71, df = 3	3 (P = 0).13); l ² =	48%		_	
Test for overall effect:	Z = 1.83 (I	P = 0.0	7)				0.2 0.5 1 2 5
Test for subgroup diffe	rences: Cl	hi² = 2.7	74. df = 1	(P = 0.	10), $I^2 = 6$	3.6%	

erecommended the routine use of lower tidal volumes for the management of patients with ARDS (GRADE Recommendation: strongly in favour)

ARDS positive end-expiratory pressure

qsuggested the using of high PEEP strategies for patients with moderate or severe ARDS (GRADE Recommendation: weakly in favour)

ARDS High frequency oscillatory ventilation

qnot recommended the use of HFOV in the management of patients with ARDS (GRADE recommendation: strongly against).

ARDS inhaled vasodilators

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Inverse I:E ratio ventilation

Opening and Closing Pressures in ARDS

High pressures may be needed to open some lung units, but once open, many units stay open at lower pressure.

Advantages gimproved gas exchange **q**improved compliance qcheap qquick cleasy **q**can reduce conversion to adjuncts: iNO, prostacycline, ECMO, oscillation

Disadvantages

- qmay require heavy sedation or paralysis
- **q**benefit may be transient
- **q**haemodynamic instability (decrease preload) **q**only some disease states respond
- ahypercapnia
- a may worsen oxygenation by shunting blood to poorly aerated regions

qmay contribute to ventilator-induced lung injury (VILI) due to overdistension and repeated opening of lung

qrisk of pneumothorax

Indications qsevere ARDS of <1 week duration

Contraindications qcirculatory instability qpneumothorax or other air leaks qhigh risk of pneumothorax (e.g. necrotising lung infection, lung cysts, etc) qventilated ARDS present >1 week (poor responders)

Three Types of Recruitment Maneuvers

ARDS Prone position

qrecommended the using of prone positioning for at least 12 hours per day in patients with moderate/severe ARDS (GRADE recommendation: strongly in favour)

ARDS Prone position Contraindications

qSevere hemodinamic instability
qLife-threatening arrhythmias
qSerious burns or open wounds on the face or ventral body surface
qIntracranial hypertension
qSpinal instability
qChest tubes inserted in the dorsal or ventral pleural space

ARDS mechanical ventilation

Incidence of side effects and complications of mechanical ventilation in ARDS

Side effect/complication	Incidence	Comment
Ventilator-associated lung injury (VALI)	Not known	Incidence and intensity depend on invasiveness/duration of mechanical ventilation
Ventilation-associated pneumonia (VAP)	14–28 %	Problem: incidence depends on VAP definition; incidence increases with duration and invasiveness of mechanical ventilation
Right ventricular dysfunction, acute cor pulmonale	Up to 50 %	Often associated with severe hypercapnia/acidosis
Pleural effusions	Up to 80 %	Frequently related to fluid overload, hypo-oncotic states, cardiac dysfunction, and altered pleural pressure
Barotrauma/pneumothorax	6–12 %	Depends on the invasiveness (P _{Plat}) of mechanical ventilation
Damage of other organ systems via cross talk	Not known exactly	Lung, brain, and—renal cross talk via inflammation pathways
Prolonged sedation and immobilization	Not known	Incidence and intensity depend on sedation strategy, (early) wake up, and spontaneous breathing trials
Fibroproliferative response of the lung parenchyma	Up to 50 % in the "lung-protective era"	Decrements in lung function (vital capacity, forced expira- tory volume) up to 5 years after discharge

ARDS mechanical ventilation

Permissive hypoxemia Conservative oxygenation strategy (aimed target SpO_2 88 - 92%) as a lung-protective approach.

Permissive hypercapnia

Even severe hypercapnia may be well tolerated (described the case of patient survival with CO_2 level of 373 mmHg). No severe side effects associated with hypercapnia were observed.

ARDS ECMO

qnot recommended the routine use of ECMO for all patients with ARDS (GRADE Recommendation: weakly against)

qsuggested the use of ECMO with lungprotective mechanical ventilation in selected patients with severe ARDS (GRADE Recommendation: weakly in favour).

ARDS neuromuscular blocking agents

qnot suggested using NMBAs for all patients with ARDS (GRADE Recommendation: weakly against). qsuggested the using of cisatracurium besylate by continuous 48-hour infusion in patients suffering early moderate/severe ARDS (< 20kPa) (GRADE Recommendation: weakly in favour).

ARDS treatment

Торіс	GRADE	Conditions
	Recommendation	
Tidal Volume	Strongly in favour	Tidal volume <u><</u> 6 ml/Kg ideal body weight; Plateau pressure < 30cmH₂O
Prone Positioning	Strongly in favour	Proning for <u>></u> 12 hours per day Patients with moderate/severe ARDS (P:F ratio <u><</u> 20kPa)
High frequency oscillation (HFOV)	Strongly against	
Conservative Fluid Management	Weakly in favour	
Higher Peek End-Expiratory Pressure (PEEP)	Weakly in favour	Patients with moderate or severe ARDS (PF ratio < <u>27kPa</u>)
Neuromuscular Blocking Agents (NMBA)	Weakly in favour	Evidence for cisatracurium besylate Continuous 48-hour infusion Patients with moderate/severe ARDS (<u><</u> 20kPa)
Extra-Corporeal Membrane Oxygenation (ECMO)	Weakly in favour	With lung-protective mechanical ventilation Patients with severe ARDS, lung injury score <u>></u> 3 or pH <7.20 due to uncompensated hypercapnoea
Inhaled Vasodilators	Weakly against	Evidence for inhaled nitric oxide
Corticosteroids	Research recommendation	
Extra-Corporeal Carbon Dioxide Removal (ECCO2R)	Research recommendation	

Status asthmaticus Definition

a prolonged severe attack of asthma that is unresponsive to initial standard therapy

Status asthmaticus Pathogenesis

Status asthmaticus Causes qViral infections

GAir pollutants - dust, cigarette smoke, and industrial pollutants **d**Medications - beta-blockers, aspirin, and nonsteroidal anti-inflammatory drugs (NSAIDs) **q**Cold temperature qExercise **c**Insufficient use of inhaled or oral corticosteroids
Status asthmaticus Risk

qIncreased use of home bronchodilators without improvement or effect **q**Previous intensive care unit (ICU) admissions, with or without intubation **q**Asthma exacerbation despite recent or current use of corticosteroids **q**Frequent emergency department visits and/or hospitalization **q**Less than 10% improvement in peak expiratory flow rate (PEFR) **q**History of syncope or seizures during acute exacerbation **q**Oxygen saturation below 92% despite supplemental oxygen

Status asthmaticus

	Moderate	Severe	Respiratory arrest imminent
Breathlessness	Prefers sitting	Sits upright	
Talks	Phrases	Words	
Alertness	Usually agitated	Usually agitated	Drowsy or confused
Respiratory rate	Increased	> 30/minute	
Use of accessory muscles	Commonly	Usually	Paradoxical thoracoabdominal movement
Wheeze	exhalation	inhalation and exhalation	Absence
Pulse	100–120	> 120	Bradycardia
PEF %	40–69	< 40	< 25
PaO2, mm Hg (on air)		< 60	

Status asthmaticus Tests

qpulsoxymetry
qspirometry
qcomplete blood count
qarterial blood gases
qelectrolites
qserum lactate level
qtheophylline level
qchest X-Ray

Status asthmaticus

Severity

	PaCO2	PaO2
Stage 1	decrease	normal
Stage 2	decrease	decrease
Stage 3	normal	decrease
Stage 4	high	decrease

Status asthmaticus spirometry

Status asthmaticus X-Ray

Status asthmaticus

ICU admission criteria **q**Altered sensorium **q**Use of continuous inhaled beta-agonist therapy **q**Exhaustion **G**Markedly decreased air entry **q**Rising PCO₂ despite treatment Presence of high-risk factors for a severe attack **q**Failure to improve despite adequate therapy

Beta2-Agonists The first line of therapy

NDC 0487-9501-25

Albuterol Sulfate Inhalation Solution, 0.083%*

2.5 mg/3 mL* *Potency expressed as albuterol.

FOR ORAL INHALATION ONLY

Equivalent to 0.5 mL Albuterol Sulfate 0.5%* diluted to 3 mL with normal saline.

Attention Pharmacist: Detach "Patient's Instructions For Use" from package insert and dispense with solution.

Protect from light. Store between 2° and 25°C (36° and 77° F). Discard if solution becomes discolored.

chron

harmacauticals orporation

(Note: Albuterol Sulfate Inhalation Solution is a clear, colorless to light yellow solution.)

Rx only

25 x 3-mL Sterile Unit Dose Vials

Albuterol nebulizing continuously (10-15 mg/h) or by frequent timing (eg, q5-20min)

*Nonselective beta2-agonists are not recomended

Anticholinergics Ipratropium bromide nebulizing every 4-6 hours

Corticosteroids

intravenously methylprednisolone 1 mg/kg/dose every 6 h

*The use of nebulized corticosteroids for treating status asthmaticus is controversial.

Methylxanthines (theophylline) IV load 5 mg/kg Infusion:

- smokers 0,72 mg/kg/h;

non-smokers 0,48 mg/kg/h;
heart feilure, hepatic feilure mg/kg/h.
*does not demonstrate a benefit to adding methylxanthines -adrenergic agonists

Magnesium Sulfate

40 mg/kg infused over 20 min **may be an adjunct to beta2-bronchodilator therapy

Fluid replacement

qHydration, with intravenous normal saline at a reasonable rate

qHypokalemia may result from either corticosteroid use or beta-agonist use

qHypophosphatemia may result from poor oral intake

*Correcting hypokalemia and hypophosphatemia may help to wean an intubated patient

Antibiotics The routine administration of antibiotics is discouraged. Patients are administered antibiotics only when they show evidence of infection (eg, pneumonia, sinusitis).

Status asthmaticus treatment Mechanical Ventilation

Indications Apnea or respiratory arrest **q**Diminishing level of consciousness **q**Impending respiratory failure marked by significantly rising PCO₂ with fatigue, decreased air movement, and altered level of consciousness **q**Significant hypoxemia that is poorly responsive or unresponsive to supplemental oxygen therapy alone

Status asthmaticus treatment **Mechanical Ventilation q**longer inspiration/expiration (I/E) ratio, often greater than 1:3-4 **q**low respiration rate (8 - 10 per min)**q**the use of positive end-expiratory pressure (PEEP) is controversial

qreduces turbulent airflow across narrowed airways,
qreduce the work of breathing
qhigh the helium concentration reduced of supplemental oxygen

Resistant status asthmaticus treatment

qKetamine **q**Neuromuscular blockers **c**Inhaled anesthetics (isoflurane) **q**Nitrate oxide qECMO

Literature

• Tobin, Martin J. New York: McGraw-Hill Medical Pub. Division, 2018. Print.

Questions for the next lecture

Respiratory, circulatory, and renal dysfunction: Is there a connection?

Acute kidney injury and acute renal failure: Identity and differences?