POLTAVA STATE MEDICAL UNIVERSITY Department of Anesthesiology and Intensive Care

General principles of the anesthesia

Boduliev Oleksii assistant professor

Lecture plan

- 1. Legal provision of medical assistance to the population
- Determine the required volume of medical care for different segments of the population according to the stage of providing medical care;
- Determine the necessary logistical equipment for the various stages of medical care
 Tasks and types of premedication.

Lecture plan

- 5. Assessment of anesthesiology and surgery risk.
- 6. Classification and physiological substantiation of the main types of anesthesiology.
- 7. Organization of postoperative management in patients of different age groups.

 Recommendations on the structure of the anesthesiology and IT service in health care establishments in Ukraine.

Lecture plan

- 9. Classification of methods of inhalation anesthesia.
- 10. Respiratory circuits.
- 11. Inhalation anesthesia.
- 12. Non-inhalation anesthesia.
- 13. Possible complications of anesthesia drugs, their prevention, diagnosis and therapy.

a state of controlled, temporary loss of sensation or awareness that is induced for medical purposes

General anesthesia is a drug-induced reversible state defined by five end points:

- Solution States Stat
- S Analgesia, lack of pain
- S Akinesia, lack of movement
- S Amnesia, lack of recall
- Physiological stability, the preservation of normal levels of all vital physiological functions, such as respiration, heart rate, blood pressure, and temperature

The use of manual fixation.

of opium and alcohol in ancient Egypt

The use

16 october 1846 William Thomas **Green Morton**, **American dental** surgeon, gave the first successful public demonstration of ether anesthesia during surgery.

August 16, 1898, August Bier performed the first successful "cocainization" of the spinal cord (spinal anesthesia) as an alternative to general anesthesia.

Local **Stopical anesthesia** Sinfiltration anesthesia Regional **Snerv block S**spinal anesthesia **Sepidural anesthesia** General anesthesia Sinhalation

topical anesthesia

Types of anesthesia infiltration anesthesia

nerv block

spinal anesthesia

SPINAL ANESTHESIA POSITIONING

-Spinal anesthesia may be performed in lying position or sitting position. The spinal needle is inserted below the level of the spinal cord.

Types of anesthesia spinal anesthesia needles

Quincke

Sprotte

Types of anesthesia epidural anesthesia

Types of anesthesia epidural anesthesia needle

Local anesthetics

Agent	Lipid Solubility	Relative Potency	Protein Binding (%)	Duration	рКа	Onset Time
Procaine	<1	1	5	Short	8.9	Slow
2-Chloroprocaine	>1	3		Short	8.7	Very quick
Mepivacaine	1	1.5	75	Medium	7.7	Quick
Lidocaine	3	2	65	Medium	7.9	Quick
Bupivacaine	28	8	95	Long	8.1	Moderate
Tetracaine	80	8	85	Long	8.5	Slow
Etidocaine	140	8	95	Long	7.9	Quick
Ropivacaine	14	8	94	Long	8.1	Moderate

Types of anesthesia inhalation anesthesia

113

dazu gehörigen Tropfflasche (Fig. 241), welche nebst der Zungenzange in einem Lederfutteral verpackt, leicht in der Tasche mitgenommen

Esmarch's Chloroformapparat.

werden kann. Durch den Tricot-Ueberzug wird bei jedem Athemzuge hinlänglich atmosphärische Luft mit eingesogen. Man hüte sich, das Chloroform so reichlich aufzugiessen, dass es von der Innenfläche des

Ether anesthesia stages

Types of anesthesia inhalation anesthesia

A BRIEF SUMMARY OF INHALATIONAL ANAESTHETICS

A RANGE OF SIMPLE BUT DIVERSE CHEMICAL COMPOUNDS WITH GENERAL ANAESTHETIC PROPERTIES. Key:

C CURRENTLY CLINICALLY UTILISED

RARELY OR NO LONGER IN USE

R

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Properties of inhaled anesthetics

Anesthetic	Blood : gas partition coeffecient	Brain:Blood Partion coefficient	Minimal Alveoler conc(mac) (%)	metabolism	Comments
Nitrous Oxide	0.47	1.1	>100%	None	Incomplete, rapid onset and recovery
Desflurane	0.42	1.3	6-7	<0.05%	Low volatility , fast induction, rapid recovery
Sevoflurane	0.69	1.7	2.0	2-5% (fluoride)	Rapid onset & recovery, unstable in soda lime
Isoflurane	1.40	2.6	1.40	<2%	Medium rate of onset and recovery
Enflurane	1.80	1.4	1.7	8%	Medium rate of onset and recovery
Halothane	2.30	2.9	0.75	>40%	Nedium rate of onset and recovery
Methoxyflurane	12	2.0	0.16	>70% (fluoride)	Slow onset and recovery,

Total Intravenous Anesthesia (TIVA)

Sedation

	VERBAL RESPONSE	COGNITIVE FUNCTION	AIRWAY PATENCY	RESPIRATORY FUNCTION	CARDIOVASCULAR FUNCTION
Light Sedation	Normal	Conscious, but cognitive function and coordination would be impaired	Normal	Normal	Normal
Moderate Sedation	Would respond purposefully to verbal commands	Depressed consciousness	Normal	Normal	Normal
Deep Sedation	Not easily aroused; verbal response only to painful or repeated physical stimuli	Depressed consciousness	Airway might require support to remain patent	Spontaneous ventilation may be inadequate	Usually maintained

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 licence.

Hypnotics

Hypnotics

Hypnotics

Pharmacokinetic Dat	a for Intrav	enous Anesthetics							
Drug	Induction, Dose, mg/kg IV (70 kg Dose)	ri ku ku su su su ku	Sedation Dose (mcg/kg/min)	Duration of Action (min)	Vd (Steady State) L/kg	t _{1/2} Distribution (min)	t _{1/2} Elimination (hr)	Protein Binding (%)	
Propofol	1–2.5 (70–125)	100–200	25–75	3–8	2–10	24	4-23	97	20–30
Thiopental	3–5 (210–350)	200–300 (1st 20 min) 30–70 (after 20 min)	30–80	5–10	2.5	2.4	11	83	3.4
Methohexital	1–1.5 (70–105)	50–150	10–50	4–7	2.2	5–6	4	73	4
Etomidate	0.20.3 (1421)	10 (*)	2.5–7.5	3–8	2.5-4.5	24	2.9–5.3	77	18–25
Ketamine	1–2 (70–140)	10–100	5–20	5–10	3.1	11–16	24	12	12–17
Dexmedetomidine**	n/a	0.2-0.7 mcg/kg/h**	0.2-0.7 mcg/kg/h**	n/a	2–3	6	2–3	94	10-30
Midazolam	0.1–0.3 (7–21)	0.25–1	0.25–1	15–20	1.1–1.7	7–15	1.7–2.6	94	6.4–11

Opioid Receptors

	µ receptor	к receptor	δ receptor
Location	μ1 – supraspinal μ2 - spinal	к1 — spinal к3 —supraspinal	Spinal Supra-spinal
Effects	Analgesia Respiratory depression Sedation Euphoria Miosis Bradycardia, Hypothermia Physical dependence	Spinal analgesia Dysphoria Sedation Psychomimetic	Spinal analgesia Affective behaviour (Supraspinal) Respiratory depression
Agonists	Morphine, Codeine, Fentanyl Pentazocine(weak) Endorphins	Pentazocine, Dynorphins	Enkephalins

Pharmacokinetics of Intravenous Opiates								
Drug	Onset	Elim t _{1/2}	Part. Coeff.	Context- Sensitive t _{1/2}		Protein- Bound (%)	Potency (compared with IV morphine)	
Fentanyl	3–7 min	475 min	820	1–2 hr	4.1	84	100	
Remifentanil	60–120 sec	3–10 min	17.8	3–6 min	0.3–0.4	80	250	
Sufentanil	3–5 min	2.5-4.5 hr	1750	17 min	2.86	92	500–700	
Alfentanil	1.5–2 min	90–111 min	130	12–18 min	0.86	92	10–25	
Morphine	20–30 min	2–4 hr	1.4		2.8- 4.2	26–36	1	
Hydromorphone	15 min	2.64	1.3		3.7	8–19	5–7	
Meperidine	15 min	3–5 hr	21		2.8-4.2	70	0.1	

	Loading Dose	Maintenance Dose		Comments		
		Bolus	Infusion			
Fentanyl	2-6 μg/kg	25-50 μg/kg	0.5-5.0 μg/kg/hr	Risk of significant depression of spontaneous ventilation		
Alfentanil	25-50 μg/kg	5-10 μg/kg	0.5-2 μg/kg/min	Propofol decreases elimination clearance and distribution		
Sufentanil	0.25 - 2µg/kg	0.1 - 0.25 μg/kg	0.5- 1.5 μg/kg/hr			
Remifentanil	1 - 2 μg/kg		0.1-1.0 μg/kg/min	During emergence and post-operatively alternative analgesia should be administered or low-dose infusion continued		
Opioids

Anaesthetic Techniques Using Opioids

Analgesia

Sedation

Balanced Anaesthesia

Neuroleptanalgesia-Neuroleptanaesthesia

TIVA

High-Dose Opioid Anaesthesia for Cardiac Surgery

Intrathecal Infusion

DEPT OF ANAESTHESIA MKCG MEDICAL COLLEGE

Monday, March 9, 2015

Neuromuscular blocking drugs

NMBDs	Intubating Dose (mg/kg) [RSI dose, mg/kg]	Maintenance Dose (mg/kg)	Onset (min)	Duration to Return ≥25% Twitch Height (min)	Duration to Return ≥0.9 TOF Ratio (minutes)	Continuous
Depolarizing				900 - 101 101 101 100 100 100 100 100 100	an o teor for environdere	entrope data salah data seria
Succinylcholine (Anectine)	1 [1–1.5]		0.5–1	5–10		
Nondepolarizing		and the second second second		+		
Pancuronium (Pavulon)	0.1	0.02	3- 5	6090	130-220	
Rocuronium (Zemuron)	0.6–1.2 [0.6–1.2]	0.1	1–2	20-35	55-80	3–12
Vecuronium (Norcuron)	0.1 [0.3– 0.4]	0.02	3–5	20–35	5080	1
Atracurium (Tracrium)	0.5	0.1	3–5	20–35	55-80	4-12
Cisatracurium (Nimbex)	0.1 [0.4]	0.02	3–5	2035	60–90	0.4-4

Monitoring

History Sconsciousness Spupil size Spulse Spreath

Monitoring

The anesthesiologist's modern workplace is like an airplane cockpit

Monitoring Pulsoxymetrie (SpO₂)

Monitoring Capnography (EtCO₂)

Monitoring Ventilation & gas monitoring

Monitoring Electrocardiography

Monitoring Blood pressure

Technique	Advantages	Limitations
Oscillometric brachial cuff	Accurate non-invasive	Intermitent
Arterial line	Gold-standard	Invasive
Volume clamp	Non-invasive	Inaccurate expensive
Physiological PWA	Non-invasive inexpensive deployed in OR	Under validation

Monitoring Blood pressure (non invasive)

Monitoring Blood pressure (invasive)

Monitoring Temperature

Monitoring Neuromuscular conduction (TOF)

Monitoring Depth of anesthesia (BIS)

Monitoring Effectiveness of analgesia (ANI)

Literature

- 1. Liang Z, Ren N, Wen X, et al. Age-dependent cross frequency coupling features from children to adults during general anesthesia. Neuroimage. 2021;240:118372. doi:10.1016/j.neuroimage.2021.118372
- 2. John F. Butterworth IV, David C. Mackey, John D. Wasnick, Morgan & Mikhail's Clinical Anesthesiology. Sixth ed. 2018, 1400

Questions for the next lecture

Respiratory failure and anesthesia: is there a connection?

Oxygen: is it always useful?